
Exploiting the ¯exibility of unstructured grids for computing complex
¯ow patterns more precisely

C.-H. Rexroth *, D. Giebert, R. Koch, S. Wittig

Lehrstuhl und Institut f�ur Thermische Str�omungsmaschinen, Universit�at Karlsruhe (TH), D-76128 Karlsruhe, Germany

Abstract

In comparison to structured meshes, the most important advantage of unstructured grids is geometrical ¯exibility provided by

the lack of strict topological rules. The present work proposes techniques to exploit this feature by generating and optimizing un-

structured meshes to achieve more accurate results in less computing time. In this article a suited layout of initial grids is shown to

improve convergence speed while reducing memory requirements and preserving numerical accuracy. To control the process of so-

lution adaptive grid optimization, normalized gradients of transport variables are proposed. These quantities prove to be e�ective in

several test cases and a demanding turbomachinery application. Although the calculations were carried out assuming two-dimen-

sional ¯ow, the methods introduced here can be applied under three-dimensional conditions without di�culty. Ó 1998 Elsevier

Science Inc. All rights reserved.
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1. Introduction

In the design process of modern gas turbines, numerical
methods for the simulation of ¯ow problems are indispensable
tools. Because of the complex geometries of relevant parts and
components, there is a growing tendency to use unstructured
grids instead of their structured predecessors. Unfortunately,
this choice is often accompanied by losses in precision and
computational e�ciency, largely caused by the introduction
of triangles or tetrahedra relieving quadrilateral and hex-
ahedral mesh elements. As a result numerical di�usion is usu-
ally ampli®ed while the grid topology gets far more complex.
However, the unmatched ¯exibility of unstructured meshes of-
fers the chance to temper or even overcome these drawbacks.
In this context the bene®ts of suited grid design and solution
adaptive optimization are discussed in the following.

2. Spatial discretization

It is well known that triangles are suited to cover two-di-
mensional domains of arbitrary shape without any di�culty.
For the Finite Volume procedure used here, the vertices of
the triangles serve as nodes of the computational grid. Apply-
ing a collocated approach, all transport variables are calculat-
ed and stored at these locations. With a Finite Volume
method, it is necessary to construct control volumes containing

the nodes. A second mesh is derived from the triangulation to
de®ne these volumes.

Fig. 1 shows the formation of the dual mesh inside and at
the boundaries of a domain. The inner cells are constructed
by connecting the centres of all triangles meeting at a node.
It should be noticed that these centres are not used to store
any ¯ow quantity during the numerical process.

Along the borders of the grid one layer of triangles is
skipped to build mesh elements attached to boundary faces.
This choice allows for a straightforward implementation of
the various boundary conditions.

Di�ering from bare triangles with only three direct neigh-
bours, the resulting polygonal Finite Volume mesh assures a
stronger coupling of the transport variables in adjacent control
volumes. Through shared faces each node is in direct contact
with all neighbouring cells via convective and di�usive
exchange.

3. Numerical algorithm

In continuing earlier work (Noll and Wittig, 1991; Kurreck
and Wittig, 1994), a Navier±Stokes code using the Finite Vol-
ume method on two-dimensional unstructured grids has been
developed to meet the requirements arising from ¯ow prob-
lems in turbomachinery (Rexroth and Wittig, 1995).

The governing transport equations are solved in a blockit-
erative manner. The velocity ®eld is derived from Reynolds-av-
eraged Navier±Stokes equations. A pressure distribution is
calculated by a SIMPLE(C)-type correction algorithm (Patan-
kar, 1981; Van Doormaal and Raithby, 1984) where a special
interpolation of cell face velocities (Rhie and Chow, 1983)
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prevents chess-board oscillations on the collocated grid. An ex-
tension for the treatment of compressibility has also been im-
plemented (Karki and Patankar, 1989). Turbulent quantities
are calculated by applying the standard k; � model together
with a logarithmic wall function (Launder and Spalding,
1974). A transport equation for the enthalpy accounts for an
exchange of energy. To assure second order accurate, bounded
and stable modelling of the convective terms, a new Derivative
based Interpolation Scheme for Convection (DISC) is avail-
able (Rexroth et al., 1997). Di�ering from approaches devel-
oped on structured grids, DISC just requires local
information on ¯ow quantities, to determine their cell face val-
ues. That way time consuming search for upstream data points
is avoided.

To assure a fast implicit solution of the linear equations the
iterative BiCGSTAB algorithm (Van der Vorst, 1992) com-
bined with a reduced ILU decomposition is applied. It rarely
takes more than one iteration of BiCGSTAB to reduce the
residual of a linear system for a single transport variable by
more than two orders of magnitude.

For enhancement of overall reliability and e�ciency of the
¯ow solver, certain acceleration techniques developed recently
have been introduced (Rexroth and Wittig, 1997).

4. Exploiting geometrical ¯exibility

Already at the stage of grid generation, it is possible to
pro®t from the geometrical ¯exibility of unstructured meshes.
Based on a rough estimation, the spatial resolution of a grid
can be chosen conformable to the mean ¯ow pattern. A related
strategy is the acceleration of convergence (AC) by a special
grid design. Finally, existing meshes can be optimized by
adapting the grid density to the character of the calculated ¯ow
®eld. The pay o� is a signi®cant gain in accuracy, if the basic
grid is relatively coarse. Both methods are capable to reduce
memory and time requirements.

4.1. Grid generation

Fig. 2 presents two di�erent grids for the common test case
of a turbulent ¯ow over a backward facing step (Eaton and
Johnston, 1980).

On top, there is a section of a conventional mesh with uni-
form spatial resolution, consisting of 9695 nodes. The second
grid takes advantage of the assumption, that near the centre
line of the domain no steep gradients in ¯ow quantities will
be found. By prescribing a coarser resolution in this region,
the number of grid nodes can be reduced to 6924 without loss
of information inside the boundary layers.

As an additional e�ect, the number of mesh cells the ¯ow
has to cross on its way from in¯ow to out¯ow boundary is re-

Fig. 2. Conventional grid and AC grid for step ¯ow.

Fig. 1. Topology of control volumes (duals).

Fig. 3. Convergence of step ¯ow calculations.
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duced in the coarse grid area. Therefore, information passes
much easier, enhancing the coupling between distant parts of
the domain. Consequently, as a main advantage, convergence
is accelerated (AC).

The corresponding convergence history in terms of normal-
ized pressure residual (Res) and number of outer iterations can
be found in Fig. 3. Here the pressure residual is de®ned as the
maximum di�erence between pressure solutions of successive
blockiterations, divided by the incoming mass ¯ow.

On the conventional grid 2490 blockiterations and 165.5
min of computing time on a Sun Sparc 10-TGX4 workstation
are required to achieve the stopping criterion of Res6 5 � 10ÿ3

for the blockiteration. With the AC grid, the same procedure is
®nished after 842 loops and 33.6 min.

Close to the convergence limit, the pressure residuals start
to oscillate in both cases. This can be attributed to the conver-
gence criterion chosen for the BiCGSTAB algorithm solving
the arising linear systems of equations. It has been set to the
same value as the outer stopping criterion. Therefore near con-
vergence the gain in accuracy achieved during one outer itera-
tion is getting smaller.

In Fig. 4, numerical and experimental results for the axial
component U of the velocity are compared at two positions
located 4.0 and 8.0 step heights s downstream of the expan-
sion. In spite of reducing the numerical e�ort to 20%, the
AC grid arrives at almost exactly the same results as the con-
ventional approach. Due to the turbulence model applied, the
length of the separation zone is underestimated.

In cases, where a comparison with measurements is not pos-
sible, the response of the AC solution to successive re®nement
and optimization of the grid should be monitored carefully.

4.2. Grid optimization

To modify the spatial resolution of a mesh, grid nodes can
be added or removed. The methods used are designed to pre-
serve the connectivity of existing nodes as far as possible.

As can be seen from Fig. 5, a new node P is inserted at the
centre of the triangle ABC, thereby divided into three smaller
triangles. To reduce distortions in the vicinity of the new node,

the altered mesh has to be checked and optimized. Therefore
the edges AB, BC and CA are swapped, whenever the minimum
angle in the alternative triangulation will be higher than in the
present state. In Fig. 5 the edges BC and CA have been
swapped for demonstration without looking at the exact geo-
metric criteria. Afterwards the new topology is ®xed.

The technique to delete grid nodes is shown in Fig. 6. In the
®rst step a new node P is inserted at the centre of an existing
triangle, too. Then its three neighbours are deleted and P is
connected to all surrounding nodes. The new edges are
checked and swapped according to the rules explained before.
Again in Fig. 6 some connections have been changed just for
demonstration. What remains to be done is ®xing the triangles.
Both procedures end with a smoothing of the modi®ed mesh.

A grid can be optimized either under complete control of
the user or automatically in a programmed algorithm. In each
case various options are at hand. For an automatic adaption
to the pattern of a calculated ¯ow ®eld, non-dimensional gra-
dients P �/i� of the transport variables /i are used.

P �/i� �
o/i

ox

���� ����� o/i

oy

���� ����� �
� D

/i;ref

�� �� �1�

P �/i� is evaluated at the grid nodes from spatial derivatives
o/i=oxj of ¯ow quantities, the mean diameter D and a refer-
ence value /i;ref at the corresponding mesh cell.

The expressions o/i=oxj� D may be interpreted as ®rst order
terms of a Taylor expansion for an unknown /i. At locations,
where the grid density is insu�cient, strong variations of /i are
associated with high values of P �/i�. In these areas, there is an
enlarged probability of numerical inaccuracies. Therefore,
P �/i� can be regarded as an indicator for the local discretiza-
tion error of /i. For high values of P�/i� grid re®nement is re-
quired, whereas low values permit coarsening.

An advantage of the formulation proposed for the error
estimator P �/i� is the possibility of minimization. With re-
®ned spatial resolution the cell diameters D become smaller,
leading to reduced values of P �/i�. Normalization by /i;ref

takes into account the absolute local magnitude of a transport
variable.

Fig. 4. Velocity pro®les for step ¯ow.

Fig. 5. Adding new grid nodes.
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Fig. 7 illustrates the distribution of P�u; v��� P �u� � P �v��
on the basic AC grid as well as the adapted mesh for the back-
ward facing step.

Re®nement was performed downstream of the expansion
where ¯ow separation provokes a high level of P�u; v�. On
the optimized grid almost constant values of P�u; v� were
found. Besides zones of detached ¯ow, P �u; v� is also sensitive
to boundary layers and stagnation points.

In transonic ¯ows, the grid optimization procedure can be
applied for shock capturing. As an example, the basic grid
and evaluations of di�erent adaption parameters P �/i� are
shown in Fig. 8 for a transonic channel ¯ow (Liu and Squire,
1988).

Over a circular arc at the bottom wall of the channel, the
¯ow accelerates to transonic speed. Near the trailing edge of

the pro®le a Mach number of 1.27 is attained, before recom-
pression takes place. As can be seen from Fig. 8 without di�-
culties, P�u; v� and P�p� are able to locate the shock, but the
product P �u; v� � P �p� of both quantities leads to contours
which are con®ned even better.

Fig. 9 presents the same mesh after optimization based on
the former criterion. The position of the shock itself and an

Fig. 7. P �u; v� and modi®ed AC grid. Fig. 8. Basic grid and P�/i� for channel ¯ow.

Fig. 6. Removing existing grid nodes.
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Fig. 9. Modif. grid and P �u; v� � P �p� for channel ¯ow.

Fig. 10. Wall pressure for channel ¯ow.

Fig. 11. Basic grid, velocity and P �u; v� at LE for cascade. Fig. 12. Modif. grid, velocity and P �u; v� at LE for cascade.
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induced ¯ow separation near the bottom wall are clearly visible
from grid resolution. The area, where peak values of the opti-
mization parameter P �u; v� � P �p� can be found, has also been
reduced signi®cantly.

To demonstrate the improvement of accuracy gained by the
re®nement, Fig. 10 shows a comparison of the pressure distri-
butions calculated along the top and the bottom wall with ex-
perimental ®ndings.

On the modi®ed grid, the shock has moved a little further
downstream at the top of the channel. Despite the simple wall
function approach used to bridge the boundary layer, the delay
in pressure recovery caused by the ¯ow separation at the trail-
ing edge of the arc, which has been suppressed on the coarser
grid, can be resolved to a certain extent now.

5. Practical application

Another example of grid optimization is given in Fig. 11.
For this practical application the ¯ow through a cascade of

®lm cooled gas turbine blades has been selected (Beeck et al.,
1992). The basic mesh is made up by 5787 grid nodes. It con-
sists of the outer domain, the two cooling air channels opening
near the leading edge of the blade (LE) and a plenum where
the cooling ¯ow is supplied.

Experiments were carried out at a blowing ration
M � �qj~wj�cool=�qj~wj�1 of 1.14. Downstream of both cooling
air injections, large separation bubbles have been found. These
characteristic features of the ¯ow ®eld are already present in the
simulation on the basic grid. With the help of the optimization
parameter P �u; v� critical mesh areas could be identi®ed in front
of the cooling jets and inside the recirculation zones next to
them. Adaption also takes place in the surface boundary layer
and inside the wake following the trailing edge of the blade.

Evaluating P �u; v�, the mesh was re®ned by 2262 additional
nodes. Fig. 12 shows, how the spatial resolution has been op-
timized, especially in the vicinity of the leading edge of the pro-
®le (LE). Therefore, the structure of ¯ow separation is
predicted in detail. According to the new contours of P �u; v�
the extension of critical areas in the ¯ow ®eld has been re-
duced, too.

For a quantitative rating of accuracy, Fig. 13 presents mea-
sured and calculated pro®les of the pressure along the surface

of the blade. The surface coordinate s has been normalized by
the chord length c. Results from basic and modi®ed grid are in
very good agreement with the measurements. The adapted
mesh improves accuracy inside both separation zones and near
the pressure minimum on the suction side.

6. Conclusion

The geometrical ¯exibility of unstructured grids can be ex-
ploited to enhance accuracy and reduce computing time of nu-
merical ¯ow calculations.

Time requirements are cut down by prescribing a spatial
resolution of the initial mesh that is capable to accelerate con-
vergence by improving the exchange of information inside the
domain.

A gain in accuracy is attained by adapting the grid to the
character of the simulated ¯ow ®eld. The optimization criteria
presented in this paper are suited to identify critical zones in-
side a domain, e.g. ¯ow separations, shocks, stagnation points
and boundary layers.
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